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Abstract. In the assessment of nodules in CT scans of the lungs, a number of image-derived features are diag-
nostically relevant. Currently, many of these features are defined only qualitatively, so they are difficult to quantify
from first principles. Nevertheless, these features (through their qualitative definitions and interpretations thereof)
are often quantified via a variety of mathematical methods for the purpose of computer-aided diagnosis (CAD).
To determine the potential usefulness of quantified diagnostic image features as inputs to a CAD system, we
investigate the predictive capability of statistical learning methods for classifying nodule malignancy. We utilize
the Lung Image Database Consortium dataset and only employ the radiologist-assigned diagnostic feature val-
ues for the lung nodules therein, as well as our derived estimates of the diameter and volume of the nodules from
the radiologists’ annotations. We calculate theoretical upper bounds on the classification accuracy that are
achievable by an ideal classifier that only uses the radiologist-assigned feature values, and we obtain an accu-
racy of 85.74 ð�1.14Þ%, which is, on average, 4.43% below the theoretical maximum of 90.17%. The corre-
sponding area-under-the-curve (AUC) score is 0.932 (�0.012), which increases to 0.949 (�0.007) when
diameter and volume features are included and has an accuracy of 88.08 ð�1.11Þ%. Our results are comparable
to those in the literature that use algorithmically derived image-based features, which supports our hypothesis
that lung nodules can be classified as malignant or benign using only quantified, diagnostic image features, and
indicates the competitiveness of this approach. We also analyze how the classification accuracy depends on
specific features and feature subsets, and we rank the features according to their predictive power, statistically
demonstrating the top four to be spiculation, lobulation, subtlety, and calcification. © 2016 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3.4.044504]
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1 Introduction
A number of features derived from CT scan images of the lung
are considered to be diagnostically relevant for the assessment of
lung nodules.1–3 We refer to these as diagnostic image features.
Examples include simple features, such as nodule diameter and
volume, as well as more complex features, such as spicularity
and lobularity. Unfortunately, the current definitions of such
complex features are qualitative in nature,1,4 precluding the
widespread use of standard algorithmic quantification of the fea-
tures for use in clinical practice. Nevertheless, many studies
have quantified such features numerically for the purpose of
either computer-aided diagnosis (CAD) or computer-aided char-
acterization, by mathematically approximating characteristics of
the features (from an interpretation of their respective qualitative
definitions) using an assortment of algorithmic methods.5–12 On
the other hand, others have used the algorithmic quantification
of image features only as intermediate quantities within a system

for classifying nodules as malignant or benign.13–18 In these
approaches, it is not clear how well the quantified features cap-
ture the true physical nature of the features themselves because
only error metrics for the accuracy of nodule classification are
considered rather than the approximation error in quantifying
the features themselves.

The development of a CAD system that first accurately quan-
tifies diagnostic image features before classifying that the lung
nodule as malignant or benign requires that the following two
hypotheses be satisfied:

1. Diagnostic features can be quantified accurately from
the image scans alone.

2. Lung nodules can be classified as malignant or benign
to within a sufficient degree of accuracy using only the
(accurately) quantified diagnostic features as input.

The first hypothesis is not discussed in this paper although it
is currently under investigation by the authors. We concentrate
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on the analysis and validation of the second hypothesis, i.e., we
assume that the diagnostic image features can be, and have been,
accurately quantified and then test whether a nodule can be
accurately classified as malignant or benign from these features
alone when they are used as inputs in statistical learning
methods. To undertake this investigation, we employ the radi-
ologist-assigned values of the various diagnostic images features
provided in the Lung Image Database Consortium (LIDC) data-
set,19 where the degree of nodule malignancy is also indicated
by the radiologist annotators. The remainder of this paper is
structured as follows. In Sec. 2, we discuss the related work.
In Sec. 3, we describe the LIDC dataset and our experimental
setup. We then present our results in Sec. 4, followed by a dis-
cussion of the results in Sec. 5, before expressing our conclu-
sions in Sec. 6.

2 Related Work
As noted by Wiemker et al.,20 two approaches to CAD can be
identified. We describe them briefly and then provide a more
detailed discussion of work done within each in Secs. 2.1
and 2.2. The two approaches are:

1. Approach one: A large set of image features that may,
or may not, have a meaningful radiological interpreta-
tion are automatically computed. The computed fea-
tures are used only as intermediate quantities by an
algorithm to produce a final binary-valued label
describing the class of the nodule (e.g., as malignant
or benign). Such features could be calculated, e.g., by
the hidden layers of a neural network or by a wavelet
transform.

2. Approach two: Diagnostic image features from vari-
ous medical–radiological terminology sets are specifi-
cally computed and quantified algorithmically. For
development of the algorithms, these quantified fea-
ture values are validated against the quantifications
of the same diagnostic image features made by radi-
ologists. Obtaining quantified diagnostic image fea-
tures may be the end goal (for the purpose of
displaying them to the radiologist for consideration
during nodule assessment) or may be used instead
(or additionally) as inputs to a larger CAD system
to automatically classify the nodule (e.g., as malignant
or benign).

We note that there is a third approach that is not to be con-
fused with the validation procedure in approach two. This third,
and separate, line of study computes various image features
and uses traditional statistical correlation techniques to find
associations between a particular image feature and a nodule
malignancy category.21–25 Such an approach can be useful for
discovering new diagnostic image features and for increasing
confidence in known associations when the computed image
feature has an accepted radiological interpretation. However,
we do not apply this approach or discuss it further here.

A goal of this present work is to determine how statistically
accurate a machine learning method can be in determining the
malignancy of a nodule, using quantified and radiologically
interpretable diagnostic image features. Thus, we explore the
feasibility of a CAD system that employs approach two.

2.1 Previous Work Related to Approach One

Here, we focus on studies that mathematically approximate
characteristics of the image features, which are then used in
an intermediary fashion to classify the nodule but that do not
necessarily attempt to validate the accuracy of the approxima-
tions made with respect to any diagnostic image feature
(Table 1).

We describe a number of approaches that use texture feature
extraction methods. For a more general review of these methods,
as used in biomedical imaging applications, see the review by
Depeursinge et al.29 To analyze texture properties that are small
distance outside the nodule’s boundary, Way et al.26 computed
the rubber-band straightening transform (RBST) along the one-
dimensional nodule boundary contour in various two-dimen-
sional (2-D) planar intersections with the three-dimensional
(3-D) nodule volume. The RBST acts as a mapping from 2-D
Cartesian coordinates to a coordinate system, where the abscissa
corresponds to the position along the nodule’s boundary contour
and the ordinate corresponds to the distance outside of the boun-
dary. Thus, the radial spicules projecting normal to a nodule’s
boundary will appear as approximately vertical lines in the
transform. After computing the transformation, a run-length
matrix was computed, which quantifies the pixel-value frequen-
cies and hence the texture. Statistics from the matrix were com-
puted and used as inputs to a linear-discriminant classifier for
classifying 96 nodules either as malignant or benign, achieving
an area under the receiver operating characteristic (ROC) curve
[area-under-the-curve (AUC)] score of 0.83. Krewer et al.13

automatically extracted 219 2-D and 3-D texture and shape
features and used a feature-selection method to find significant
features, which were then used as inputs to support vector
machines (SVMs), decision trees, and nearest-neighbor classi-
fication methods on 33 cases from the LIDC dataset. They
reported an accuracy of 90.91% in classifying 14 malignant
and 19 benign nodules from the LIDC dataset when correla-
tion-based feature-selection was used. Only the five optimal fea-
tures that result from their feature selection process, which
include 3-D-wavelet coefficients, are specified,. Han et al.14

extracted 2-D and 3-D Haralick features (i.e., statistical features
computed from a pixel-intensity co-occurrence matrix), Gabor
features (i.e., convolutional responses to the Gabor wavelet),
and local binary pattern features (i.e., the histograms of neigh-
borhood intensity comparisons) as inputs to SVMs to classify
1356 nodules from the LIDC dataset as malignant or benign.
They reported average AUC scores of 0.89, 0.88, and 0.87,
respectively, for the three previously mentioned features.

El-Baz et al.16 considered a series expansion representation
of the nodule surface using spherical harmonics. Using the coef-
ficients in the series as descriptors of the nodule boundary shape,
they classified 51 malignant and 58 benign nodules using a near-
est-neighbor method, and achieved 94.4% accuracy. Tac and
Uur17 used a combination of shape and texture features for
detecting and classifying nodules in the LIDC dataset. The fea-
tures include 16 shape features, among which are geometrical
characterizations such as area, eccentricity, and boundary
length, and 22 texture features, which include statistical charac-
terizations of pixel values such as the mean, variance, and
entropy. After performing feature selection, they reported a clas-
sification accuracy of 95.64% using a generalized linear model
classifier on 141 nodules. Dilger et al.27 investigated the hypoth-
esis that image features derived from the region surrounding
the nodule improves classification accuracy. Testing their
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hypothesis on 50 lung nodules, they found that the AUC score
improved from 0.918 (excluding features derived from sur-
rounding tissue) to 0.938 (including features derived from sur-
rounding tissue). Kaya and Can18 used a combination of both
quantified features from the LIDC dataset and image-derived
features, such as Zernike moments to automatically assess the
malignancy of a nodule, and achieved an accuracy of 84.89%. In
the work by Firmino et al.,28 the histogram of oriented gradient
(HOG) features were used in conjunction with the radiologist-
quantified features as inputs to an SVM classifier, employing the
LIDC dataset for the diagnosis phase of a combined lung-nodule
detection and diagnosis system; they achieved AUC scores of
up to 0.91.

Although these methods may achieve high classification
accuracy, it should be noted that direct comparisons are difficult
to make because of the varying datasets and dataset sizes used.
Moreover, it is not clear whether or not the intermediate features
agree with any known diagnostic image features because the
quantifications are not validated against ground-truth labels of
diagnostic image features assigned by radiologists. We also see
from the above studies that there appears to be no standard way
of quantifying these diagnostic features. A lack of a standard
method could be problematic if different methods exhibit differ-
ent sensitivities to noise and to the variability of anatomical
features present in operational settings.

2.2 Previous Work Related to Approach Two

Nodule volume and volume doubling-time are well-established
indicators used to assess malignancy,3 and there are studies that
attempt to accurately quantify the volume of a nodule using CT
scan image data (Table 2). Compared to other more complex and
qualitatively defined diagnostic features of a nodule, such as
spiculation, the nodule volume is simpler to define. Thus, its
quantification has been more prevalent in studies compared
to other diagnostic features. Quantification of nodule volume
is often posed as a segmentation problem, which is a well-estab-
lished subfield of medical imaging research.33–35 Mullally
et al.30 devised an adaptive-threshold segmentation algorithm

to determine nodule growth rate. They tested their method on
images from scanned physical phantoms consisting of
implanted artificial lung nodules of various known volumes.
When their algorithm was tested on CT scans of the phantom,
they achieved a volume error to within 23% of the known size,
according to a root-mean-square error metric. Reeves et al.31

used a combination of “pleural segmentation, adaptive thresh-
olding (of Hounsfield units in the CT image data), image regis-
tration, and knowledge-based shape matching” to measure
nodule volume and determine volume change in consecutive
CT scans of the same patient. They validated their algorithm
by measuring the variability in the volume measurements on
50 nodules, which were known to be stable (i.e., they demon-
strated no change in volume) over a 2-year period. A significant
decrease in variability was observed when compared to their
previous methods, which employed a fixed rather than adaptive
threshold. Way et al.26 modified the 2-D active-contours algo-
rithm by adding 3-D energy terms for segmenting 23 lung nod-
ules in the LIDC dataset. Employing the radiologist-annotated
segmentations in the LIDC dataset, they quantified the perfor-
mance of their method using a measure of overlap with the given
annotations and achieved an average overlap score of up to 0.63.
Messay et al.32 used a regression neural network to guide thresh-
olding parameters for segmenting lung nodules in the LIDC
dataset. They tested their system on 66 lung nodules and
achieved up to an 80% overlap score with the known nodule
annotations.

In addition to nodule volume measurements, a number of
papers have attempted to quantify more complex shape and
appearance features. Iwano et al.5 considered 102 nodules clas-
sified by radiologists into different categories of shapes (i.e.,
round, lobulated, spiculated, and four other shape categories)
and used computed measures of aspect ratio, circularity, and sec-
ond central moment to quantify these shape categories. They
found that circularity and second-moment features are suitable
for differentiating between some of the categories; however,
they found difficulty in using these features to separate nodules
in the spiculated and “ragged” categories. Raicu6 argues that
quantification of diagnostic features will “reduce the semantic

Table 1 Previous work related to approach one.

Year Author Method Result

2006 Way et al.26 Linear discriminant trained on run-length features from RBST AUC of 0.83

2011 El-Baz et al.16 Nearest-neighbor trained on spherical harmonic coefficients Accuracy of 94.40%

2013 Krewer et al.13 Nearest-neighbor trained on various image-derived shape and
texture features

Accuracy of 90.91%

2015 Dilger et al.27 Artificial neural network and linear-discriminant classifiers
trained on features including those derived from lung tissue
surrounding the lung nodule

AUC of 0.938

2015 Tac and Uur17 Generalized linear model trained on various image-derived
shape and texture features

Accuracy of 95.64%

2015 Han et al.14 SVM trained on Haralick features AUC of 0.89

2015 Kaya and Can18 Random forest trained on various image-derived features and
LIDC labels

Accuracy of 84.89%

2016 Firmino et al.28 SVM trained on HOG features and LIDC labels AUC of 0.91
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gap” in medical image retrieval and interpretation, and they use
a variety of low-level shape, size, texture, and intensity features
to map these features to the corresponding diagnostic image fea-
ture labeled in the LIDC dataset, using logistic regression, deci-
sion trees, and SVMs. Separating out the cases for analysis
where various numbers of annotators agree on the quantified
values of the features, their accuracies range from 38% to
100%, on average. Zinovev et al.7 used shape, size, texture,
and intensity features, combined with an active learning method,
to compute the diagnostic feature labels assigned by radiologists
in the LIDC dataset and achieved up to 73% accuracy. Dhara
et al.8 used a differential geometry approach, using Gaussian
and mean curvatures, to quantify the spiculation of lung
nodules. They validated their quantification method using the
expert-derived labels assigned by the radiologists in the LIDC
dataset and achieved an average accuracy of 87.4% on 95 nod-
ules. Zhang et al.10 also use the spiculation labels provided in the
LIDC dataset to validate their nodule-spiculation quantification
method, which uses edge information computed along the nod-
ule boundary, on 20 cases (10 spiculated and 10 nonspiculated).
They achieve a sensitivity of 90%. Niehaus et al.11 analyzed the
association between nodule size and the success of computing
accurate spiculation labels from the LIDC dataset. They find that
the AUC score increases roughly from 0.6 to 0.9 as the size of
the nodules considered increases. Ciompi12 introduced a bag-of-
frequencies descriptor as inputs to a statistical classifier to cat-
egorize 255 nodules from the NELSON and DLCST datasets as
either spiculated or nonspiculated. They compared the use of the
proposed bag-of-frequencies features with the use of scale
invariant feature transform and spherical harmonic features,
resulting in AUC scores of 0.9, 0.456, and 0.63, respectively.

In approach two, although the computed diagnostic image
features are validated against the ground-truth provided by
expert annotators, it is clear that, similar to the situation with
methods that are employed in approach one, there is no standard
method for the algorithmic quantification of any particular fea-
ture. The different accuracy of the methods and their potential
variation due to scanner noise and parameters make approach
two a challenging one to effectively incorporate as a medically
useful component of a CAD system.

3 Materials and Methods

3.1 Brief Overview of the Lung Image Database
Consortium Dataset

The LIDC dataset19 is a publicly available set of 1018 lung CT
scans collected through various universities and organizations.
In addition to the CT image data, manual annotations for each
scan from anonymous radiologists from four sites are provided.
These annotations are made with respect to the following types
of structures:

1. Lung nodules whose largest diameter is greater than
3 mm.

2. Lung nodules whose largest diameter is less than
3 mm.

3. Nonnodule structures whose largest diameter is greater
than 3 mm.

For each of these types, the location of the structure is given
in image coordinates as determined by each of the four

Table 2 Previous work related to approach two.

Year Author Targeted radiological feature Method Result

2004 Mullally et al.30 Volume Adaptive thresholding Within 23% of known size

2005 Iwano et al.5 Roundness, lobulation,
spiculation

No formal classification method used No reported metric

2006 Reeves et al.31 Volume Adaptive thresholding with additional
knowledge-based techniques

Observed significant decrease
in segmentation variability

2006 Way et al.26 Volume Active contours with 3-D energy terms Average overlap score of 0.63

2009 Raicu6 LIDC feature labels Logistic regression, decision trees,
SVM trained on low-level, computed
image features

Accuracy ranged from 30% to
100%, depending on target
features

2009 Zinovev et al.7 LIDC feature labels Active-learning method, trained on
low-level, computed image features

Accuracy up to 73%

2013 Dhara et al.8 LIDC spiculation labels Quantification via differential-
geometry methods

Average accuracy of 87.4%

2014 Zhang et al.10 LIDC spiculation labels Quantification via nodule boundary
information

Sensitivity of 90%

2015 Ciompi12 NELSON and DLCST
spiculation labels

Random forest trained with “bag-of-
frequencies” features

AUC of 0.9

2015 Messay et al.32 Volume Regression neural network Average overlap score of 0.80

2015 Niehaus et al.11 LIDC spiculation labels Decision tree trained on various
image-derived shape and texture
features

AUCs of 0.6 to 0.9, depending
on nodule-size grouping
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physicians, with no forced consensus about their existence or
location imposed. It is the first type of structure (i.e., lung nod-
ules with largest diameter ≥3 mm) that we analyze in this work.
For this type of structure, additional annotations are assigned by
each of the same radiologists from the four sites. These anno-
tations include manually drawn contours of the nodule bounda-
ries in the CT scan slices, quantified values for a variety of
nodule features, and a quantified value of the estimation of
the nodule’s malignancy at the time of assessment. The eight
quantified nodule features and the corresponding malignancy
quantification, along with the features’ respective rating sys-
tems, are listed and described in Table 3. Note that the quanti-
fications are radiological interpretations of the presence of the
respective physical features. We emphasize that the malignancy
quantification is not pathologically established in the majority of
nodules. However, some follow-up data are available for a small
subset of the nodules in the dataset (but we have not considered
this data in our study). An example nodule from the dataset,
along with the assigned diagnostic feature values, is shown
in Fig. 1.

We summarize some of the patient demographic and scan
information (obtained by inspecting the DICOM file data

from the LIDC dataset) in Figs. 2 and 3. In 734 scans, no
age or gender information is provided. In the remaining 284
cases where gender information (DICOM Tag ID: 0010,0040)
is available, the distribution is 49.3% male and 50.7% female.
When age information (DICOM Tag ID: 0010,1010) is also
available, the median age is 61 years, as can be seen in Fig. 2.
It is never the case that age information is available but gender is
not. Figure 3 illustrates the distribution of the spacing of pixels
within a slice of the scan (DICOM Tag ID: 0028,0030) and the
thickness of each slice (DICOM Tag ID: 0018,0050), having
medians of 0.6986 and 2.0 mm, respectively.

3.1.1 Our use of the Lung Image Database Consortium
dataset

We note a few important subtleties regarding the values and
scales used for the spiculation and lobulation feature values.
The initial description36 of the rating systems used to quantify
these features specified a value of 1 as highly spiculated (lobu-
lated) and a value of 5 as lacking spiculation (lobulation).
However, the present rating system reverses this description,37

i.e., it designates 1 as a low presence of the feature and 5 as high
(as shown in Table 3). Furthermore, it has been reported that
there are 399 known cases in the LIDC dataset for which a sub-
set of 100 may have been annotated using the inconsistent rating
systems for spiculation and lobulation.37 It is not known pre-
cisely for which 100 of the 399 cases the ratings may have been
inconsistently applied (i.e., with a 1 as high and a 5 as low). For
this reason, we have omitted these 399 cases in our analysis.
However, we observe that there are a number of published
articles that employ these physician-quantified labelings of spic-
ulation and lobulation from the LIDC dataset, but none mention
the possible mislabelings in the dataset nor the exclusion of
these 399 cases from their studies.6–8,10,11,18,22,32,38–41

Leaving out these 399 cases, we are left with 4384 nodule
annotations that were consistently labeled. The number of anno-
tations used is further reduced from 4384 to 2817 to exclude
indeterminate cases (as described in Sec. 3.2). Each nodule
may have been assigned between one and four annotations,
depending on the level of agreement among the four annotators
of the nodule belonging to the first type of structure. The physi-
cal nodules lack a universal, unique identifier among the many
annotations; thus, it is difficult to ascertain which annotations
refer to the same physical nodule in a scan without careful visual
inspection. Algorithmically, it is possible to roughly determine
which annotations refer to identical nodules by comparing the
coordinates and overlap of annotations. However, this process
requires somewhat arbitrary choices to be made to determine
when multiple annotations may actually refer to the same nod-
ule. For example, one would need to decide at what percentage
of overlap, or at what average distance among annotation coor-
dinates, multiple annotations would be declared to refer to the
same physical nodule. For these reasons, we treat each annota-
tion as a unique sample for our dataset. More specifically, we
treat the quantified features as random vectors, X, and malig-
nancy values as random variables, Y, and we consider each
annotation as an independent draw from the joint distribution,
(X; Y). Thus, it may be possible that separate dataset samples
refer to the same physical nodule; however, we consider
these instances to be different realizations of the random quan-
tity, (X; Y), where the source of randomness is from noise (e.g.,
due to accidental mislabelings) and from natural variations of
the quantified feature values (e.g., due to varying annotator

Table 3 Features annotated by radiologists in the LIDC dataset and
associated rating system used.

Feature
Subtlety
(ordinal)

Internal structure
(categorical)

Calcification
(categorical)

Rating
system

1 Extremely
subtle

1 Soft tissue 1 Popcorn

2 2 Fluid 2 Laminated

3 3 Fat 3 Solid

4 4 Air 4 Noncentral

5 Obvious 5 Central

6 Absent

Feature Sphericity
(ordinal)

Margin (ordinal) Lobulation (ordinal)

Rating
system

1 Linear 1 Poorly-defined 1 No lobulation

2 2 2

3 Ovoid 3 3

4 4 4

5 Round 5 Sharp 5 Marked lobulation

Feature Spiculation
(ordinal)

Texture (ordinal) Malignancy (ordinal)

Rating
system

1 No
spiculation

1 Nonsolid/ground
glass

1 Highly unlikely for
cancer

2 2 2

3 3 Mixed-solid 3 Indeterminate

4 4 4

5 Marked
spiculation

5 Solid 5 Highly likely for
cancer
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experience and training). This leads to a consistent view of the
data. The statistical learning methods then model the conditional
probability distribution, PðYjXÞ, of malignancy, given the quan-
tified feature values. We describe the two statistical learning
methods that we use and our methodology in Sec. 3.2.

3.2 Approximation of Malignancy Category Via
Statistical Learning

We treat the statistical approximation of the malignancy cat-
egory of nodules as a binary classification problem for “malig-
nant” versus “benign” by thresholding the radiologist-assigned
malignancy values so that malignancy values below 3 (i.e., 1 and
2) are categorized as benign and values above 3 (i.e., 4 and 5) are
categorized as malignant. We also experimented with treating
the output labels as multiple classes (i.e., belonging to one of
the 5 values, {1, 2,. . . ,5}) and the output label as a continu-
ous-valued variable (i.e., with real-valued outputs on the inter-
val, [1, 5]), but in both of these cases, the results obtained are
inferior to the results presented here. We exclude cases that are
labeled by a radiologist as having an indeterminate malignancy
(i.e., an assigned value of 3). We also investigated the use of
different possible thresholdings, specifically, the two that cat-
egorize nodules with a malignancy value of 3 into either the
benign or malignant category, and we obtained similar results.Fig. 2 Distribution of age and sex in the LIDC dataset.

Physician Subtlety Internal Structure Calcification Sphericity Margin Lobulation Spiculation Texture Malignancy
1 5 1 6 3 3 3 4 5 5
2 5 1 6 4 4 5 5 5 5
3 5 1 6 3 2 3 3 5 5
4 5 1 6 5 4 1 5 4 4

Fig. 1 Example nodule from the LIDC dataset with diagnostic feature values from four radiologists.

Fig. 3 Distributions of scanner resolutions in the LIDC dataset.

Journal of Medical Imaging 044504-6 Oct–Dec 2016 • Vol. 3(4)

Hancock and Magnan: Lung nodule malignancy classification using only radiologist-quantified image features. . .



Thus, excluding from the dataset annotations with a malignancy
value of 3, we are left with 2817 annotations that remain to be
analyzed, each of which consists of the quantified diagnostic
image features (which are the input features for a nodule)
and the malignancy category (which is the nodule’s correspond-
ing target label). The distribution of values for each of the eight
diagnostic input features and for the distribution of malignancy
is shown in Fig. 4, with the values for each feature defined in
Table 3.

To generate the malignancy category from the annotated nod-
ule features algorithmically, we employ two statistical learning
techniques for classification. The first, logistic regression, is a
linear method, while the second, random forests (which is based
on decision trees), is a nonlinear method.42 These techniques use
a subset of the data to learn a mapping—from the diagnostic
image features as inputs to the malignancy category as out-
put—during the training (or learning) phase of the algorithms.
In the testing phase, the accuracy is evaluated on a subset of the
data that the algorithms did not use in any way during the train-
ing phase, i.e., on the testing data. For all the numerical experi-
ments herein, each random forest employs 100 decision trees
constrained to maximum depths of 8, which was found to be
a good parameter value through preliminary testing. We also
experimented with various other linear and nonlinear statistical
classifiers applied to our dataset, and obtained results similar to
those obtained with the logistic regression and random forest
classifiers.

In summary, our dataset consists of N ¼ 2817 samples,
which belong to 530 of the available total of 1018 scans.
This results from: (1) removing the 399 possibly inconsistently
labeled data and (2) removing the annotations with an “indeter-
minate” malignancy rating. The binary output-label for the stat-
istical learning algorithms, Yi (i ¼ 1; : : : ; N), is the thresholded,
radiological, malignancy quantification, while the input vector,
Xi (i ¼ 1; : : : ; N), is a subset (of length L) of the available radi-
ologist-quantified image features (with 1 ≤ L ≤ 10). The par-
ticular value of L depends on the numerical experiment
being performed. We describe the numerical experiments con-
ducted in this study in Secs. 3.2.1 and 3.2.2.

3.2.1 Experiment one

The purpose of the first experiment is to determine how well the
radiologists’ categorization of malignancy from diagnostic
image features can be approximated by statistical learning algo-
rithms. We train both the linear and nonlinear classifier on a ran-
domly chosen subset of the data (with each subset containing
approximately 75% of the whole dataset) and test the accuracy
on the remaining 25% of the dataset. We repeat this procedure
1000 times to obtain robust statistical results. Examples for the
training and testing sets were selected using a uniform random
distribution. Thus, the average percentage of malignant cases in
both the randomly generated training sets (41.04%) and testing
sets (41.02%) is approximately equal to the percentage of

Fig. 4 Distribution of annotation values for image features and malignancy. Note the excluded bin for the
indeterminate malignancy value of 3.
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malignant cases in the entire dataset (41.04%). Note that
because of the overall class imbalance of about 9%, a classifier
that always chooses the “benign” class, independent of the input
vector, will achieve a classification accuracy of approximately
59%. Therefore, this should be considered the baseline accuracy
for comparison with any given classifier’s performance.

In addition, we note that ground-truth estimates of two addi-
tional features, the nodule diameter and volume, can be made
from the nodule boundary contours provided in each radiolog-
ist’s nodule annotation. We treat these two features separately
from the eight diagnostic features given in Table 3 for three rea-
sons. First, since the diameter and volume are given only implic-
itly by the annotation contours, choices must be made as to how
to define and algorithmically extract these two quantities.
Second, since their values are given by positive real numbers,
these two features differ from the others given in Table 3, whose
values are restricted to a small, finite set of positive integers.
Third, we are able to derive a theoretical upper bound on the
classification accuracy when the diameter and volume features
are excluded, as we describe in Sec. 3.2.3. Hence, in the first
experiment, we analyze two cases. The first includes diameter
and volume estimates, along with the eight diagnostic image
features given in Table 3 and, thus, employs a total of 10
input features. The second excludes the diameter and volume
features, leaving a total of eight input features. We repeat the
process described in the preceding paragraph (involving the
75%/25% training/testing dataset split and 1000 trials) with
and without the nodule diameter and volume estimates.

To estimate the diameter of a nodule from a nodule’s boun-
dary contour annotations, we first find the maximum pairwise-
distance among contour coordinates in each image slice that
contains the nodule’s boundary contour; then we adjust each
of these distances by taking into account the axial-plane scan
resolution (which is the same within each slice). The diameter
is taken to be the maximum of these distances over all image
slices that contain a boundary contour belonging to the nodule.
We do not exclude cases where the corresponding maximum-
length line segment in each slice passes outside of the nodule
or through cavities of the nodule.

To estimate the volume of a nodule using the radiologist-
assigned, nodule boundary contours, we first find the area inside
of each axial-plane contour (accounting for the axial-plane res-
olution of the respective scan) using Green’s theorem. Next, we
multiply the area enclosed by each contour by its respective slice
thickness to obtain the volume of each slice. Finally, to arrive at
the total volume, we sum each slice volume of the contours
annotated as “included” (i.e., the contours marked as enclosing
the nodule) and subtract the slice-volumes of those contours that
are annotated as “excluded” (e.g., contours that mark the pres-
ence of cavities within nodules).

We rely on the following error metrics (defined below) aver-
aged over the 1000 trials performed in experiment one:

1. classification accuracy,

2. sensitivity or true positive rate (TPR), and

3. area-under-the-ROC-curve score (AUC).

The classification accuracy is the percentage of correctly
labeled examples in a test dataset when the probabilistic output
of the classifier is thresholded at t ¼ 1∕2. For a given threshold,
t, the number of occurrences where the classifier-assigned label
and ground-truth label are both malignant is denoted by TPðtÞ,

which represents the number of true positives. Similarly, for a
given threshold, t, the number of occurrences where the classi-
fier predicts malignant and the correct label is benign is denoted
by FPðtÞ, which represents the number of false positives. The
number of true and false negatives (having their expected mean-
ings) is likewise denoted by TNðtÞ and FNðtÞ, respectively.
Sensitivity, or the TPR, is a function of the threshold, t, and
is defined as

EQ-TARGET;temp:intralink-;sec3.2.1;326;664TPRðtÞ ¼ TPðtÞ
TPðtÞ þ FNðtÞ :

Sensitivity is an empirical estimate of the probability that the
classifier predicts malignant cases correctly as malignant. We
record the average sensitivity, with t ¼ 1∕2, over the trials.
The ROC curve requires the calculation of the false positive
rate (FPR), which is defined for a particular probability thresh-
old, t, as

EQ-TARGET;temp:intralink-;sec3.2.1;326;554FPRðtÞ ¼ FPðtÞ
FPðtÞ þ TNðtÞ :

The FPR is an empirical estimate of the probability that the
classifier incorrectly predicts benign cases as malignant. The
ROC curve is the parametric curve with coordinates,
½FPRðtÞ;TPRðtÞ�, for 0 ≤ t ≤ 1. This curve is sampled by dis-
cretizing the interval, [0, 1], with 101 points, ti ¼ i∕100 with
i ¼ 0;1; : : : ; 100. Finally, we calculate the AUC score, which
is the area under the ROC curve. It represents an empirical esti-
mate of the probability that the probabilistic output of the clas-
sifier is greater for a malignant example than for a benign
example. We approximate the AUC score by employing the
trapezoidal rule, a standard numerical integration method.

3.2.2 Experiment two

The purpose of the second experiment is twofold. First, it is to
test the simple hypothesis that increasing the number of diag-
nostic features used by the classifier improves its ability to
assess a nodule’s malignancy; second, it is to determine which
of the diagnostic features in Table 3 are most useful for assessing
the malignancy. In experiment two, we exclude the diameter and
volume estimates that were used in experiment one. Rather than
using all eight of the remaining features as input, we use subsets
of features of size n ¼ 1;2; : : : ; 8 as input. Thus, with eight input
features, there are 255 possible unique subsets, excluding the
empty set; each of which is tested. For each possible subset,
we train the nonlinear classifier on a random subset of the
total data (containing approximately 75% of the 2817 annota-
tions in the dataset);then we test the classification on the remain-
ing 25% of the data to determine classification accuracy. This
procedure is repeated 1000 times for each possible subset. Not
only will it reveal how the accuracy varies by using an increas-
ing number of features for classification, but it will also allow us
to find the most (and least) relevant diagnostic image features for
classifying nodules as malignant or benign.

To analyze the effect of increasing the number of features
used, we use both a forward and a backward feature-selection
process.42 Forward selection sequentially chooses the best pos-
sible feature to add to the subset to improve classification accu-
racy, starting from the best, single feature. Backward selection,
on the other hand, sequentially removes the worst possible fea-
ture, starting from all eight features. Thus, they are both a greedy
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process. The minimum, mean, and maximum accuracies are cal-
culated at each step of these two selection processes.

We also generate an ad-hoc ranking of the features via the
following two metrics:

1. Single-feature accuracy is defined as the accuracy
when a specific feature is used by itself.

2. Percent feature-significance is defined as the percent-
age of cases for which the addition of a specific feature
to any subset not containing that feature produces a
statistically significant increase in accuracy.

To compute the percent feature-significance for the j’th fea-
ture, we gather every subset that does not contain the j’th fea-
ture. Since there are eight features being used, this leaves 127
subsets. For each of these subsets, there is a corresponding sub-
set that results from adding the omitted j’th feature. To deter-
mine statistical significance, we perform a paired t-test among
the classification accuracies obtained over the 1000 trials for
these two subsets. The percent feature-significance is deter-
mined by counting the number of times, out of the total of
127 subsets that exclude the j’th feature, that the addition of
the j’th feature results in a statistically significant increase in
accuracy. To complete the ranking, we sort the features by
(1) their single-feature accuracy, (2) their percent feature-signifi-
cance, and (3) the geometric mean of these two metrics.

Finally, for comparison with these, we also list the average
feature-importances (or RF feature-importances) computed by
the random forest algorithm when all eight features are used.
The RF feature-importance metric is found by randomly per-
muting the values for the j’th feature on the out-of-sample train-
ing data (i.e., training data not used in the bootstrap sampling
procedure of the random forest algorithm), recording the
increase in error due to the permutations, and averaging the error
increase over the out-of-sample data.42 Larger RF feature-impor-
tances correspond to features whose value-permutations cause
larger increases in error, on average; thus, a larger RF fea-
ture-importance signifies a more informative feature. We note
that the RF feature-importances are normalized such that the
sum over the features is equal to one.

3.2.3 Maximum attainable accuracies

Before proceeding to the results of experiments one and two, we
describe how a theoretical upper bound for the classification
accuracy on the testing data is calculated.

There is not a one-to-one correspondence between the input
values (i.e., the quantified diagnostic feature values) and output
labels (i.e., the two malignancy categories) in the annotated
dataset since there are instances across the entire dataset where
multiple annotations of nodules that were made by the radiol-
ogists have identical input feature values but correspondingly
different output labels. We will refer to such sets of multiple
annotations as degenerate groups. There are a total of 151 such
groups, involving 1441 annotations out of the total 2817 anno-
tations considered in the dataset. The number of associated
annotations in each degenerate group may vary. For example,
one degenerate group consists of seven annotations (with iden-
tical diagnostic feature inputs), with six of the seven annotations
assigning a label of malignant and the remaining one indicating
benign.

Keeping the degenerate groups in mind, we consider the sit-
uation where the training dataset has been selected and the clas-
sifier has determined its parameters from it. Thus, we are at the
testing phase. If the classifier is to generalize well, then it should
correctly classify all examples in the testing data. However, the
classifier’s accuracy cannot theoretically be 100% on the testing
dataset because it is limited in the following two ways by the
presence of degenerate groups in the datasets:

1. If an example in the testing dataset is a member of a
degenerate group that has one or more members in the
training set, then the classifier is constrained to output
the same output value it predicted in the training set.
Any example in the testing dataset that is thus misla-
beled by the classifier lessens the maximum attainable
accuracy that can be achieved on the testing dataset.

2. If an example in the testing dataset is a member of a
degenerate group and has members only in the testing
set, then a classifier that performs ideally would pre-
dict the majority class for the group, thus maximizing
the overall classification accuracy. For example, a
member of a degenerate group, whose members are
only in the testing dataset and whose class label is
the minority class for its group, lessens the maximum
attainable accuracy achievable on the testing dataset.

Therefore, in the calculation of the theoretical upper bound
of the classification accuracy, for any selected partition of the
dataset into training and testing datasets, we compute the maxi-
mum attainable accuracy for each testing dataset by considering
all possible occurrences of the two types above involving degen-
erate groups. Note that the upper bound on the attainable accu-
racy does not apply when the diameter and volume features are
included as input features due to their real-valued nature.

4 Results
We describe here the results from the experiments described in
Secs. 3.2.1 and 3.2.2. In Sec. 5, we discuss and interpret these
results.

The results for experiment one are shown in violin plots of
classification accuracy in Figs. 5 and 6 and are summarized in
Table 4. Each violin plot is a smooth estimate of the probability
density function (for the distribution of classification accuracy),
which is symmetrically mirrored across a vertical line. Thus, the
area of a region within a violin plot that is located between any
two chosen values on the vertical axis is proportional to an
empirical estimate of the probability of observing a value of
the classification accuracy between the two bounding values
chosen. In Fig. 5, the results for the linear and nonlinear clas-
sifiers are shown in gray and white, respectively, and the results
for the cases when both the diameter and volume features are
included and excluded are shown with cross-hatching and with-
out, respectively. In Fig. 6, for the nonlinear method when the
diameter and volume features are excluded, the distribution of
the theoretical maximum accuracy and the achieved accuracy
are shown on the left in gray, with and without cross-hatching,
respectively. The distribution of their respective differences is
shown on the right, in white. Note that, in Fig. 6, the scale
for the accuracy plots is given on the left, while the scale for
the difference-in-accuracy plot is given on the right.

The results for experiment two are shown in Fig. 7 and in
Tables 5 and 6. Figure 7 shows, for a particular fixed
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feature-subset sizes varying from one to eight, the obtained cor-
responding distribution of accuracies in a violin plot (as
described previously). Table 5 lists the feature subsets (and
their corresponding classification accuracy) that were obtained
at each step of the forward- and backward-selection processes
for selecting subsets of size one-greater (that increase accuracy
the most) or one-lesser (that decrease accuracy the least), respec-
tively. Table 6 ranks the features according to the measures
described in Sec. 3.2.2, i.e., by the single-feature accuracy, per-
cent feature-significance, geometric mean of the two, and the

average RF feature-importance metric, with the latter two
providing an overall ranking of a feature’s significance for
classification.

5 Discussion
The results for experiment one are summarized in Table 4. When
diameter and volume features are excluded, the mean accuracies
for the linear and nonlinear classifiers are 83.23 ð�1.25Þ% and
85.74 ð�1.14Þ%, respectively, as can be seen in Fig. 5. The non-
linear classifier performs slightly better (by 2.51%) on average,
indicating that the malignancy category is slightly better
explained by a nonlinear transformation of the input features
than by a linear combination (i.e., by a weighted sum) of the
features. Correspondingly, we compute average sensitivities
(for t ¼ 1∕2) of 0.801 (�0.022) and 0.843 (�0.024), and we
calculate average AUC scores of 0.916 (�0.009) and 0.932
(�0.012). Our results are comparable to current results in the
literature that use features computed from images that may or

Fig. 5 Distribution of accuracies for experiment one.

Fig. 6 Comparison of maximum attainable and achieved accuracies
with nonlinear classification (diameter and volume excluded).

Table 4 Summary of results from experiment one.

Accuracy
ðt ¼ 1∕2Þ

(%)
TPR

ðt ¼ 1∕2Þ AUC

Linear classifier, diameter
and volume features excluded

83.23
(�1.252)

0.8013
(�0.0216)

0.9164
(�0.0087)

Linear classifier, diameter and
volume features included

84.64
(�1.184)

0.7906
(�0.0218)

0.9302
(�0.0079)

Nonlinear classifier, diameter
and volume features excluded

85.74
(�1.141)

0.8430
(�0.0239)

0.9322
(�0.0123)

Nonlinear classifier, diameter
and volume features included

88.08
(�1.109)

0.8461
(�0.0218)

0.9492
(�0.0070)

Fig. 7 Distribution of accuracies for experiment two.
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may not be medically interpretable (as discussed in Sec. 2). For
example, Firmino et al.28 reported an AUC of 0.91 using a com-
bination of image-derived features and LIDC features. Our
results yield a similar score but use only the LIDC features.
The classification accuracy improves when the diameter and
volume features are included, with the mean accuracy for the

linear classifier increasing by 1.41%, to 84.64 ð�1.18Þ% and
for the nonlinear classifier increasing by 2.34%, to 88.08
ð�1.11Þ%, as can be seen in Fig. 5. Correspondingly, average
sensitivities (at t ¼ 1∕2) are calculated to be 0.791 (�0.024) and
0.846 (�0.022), with average AUC scores of 0.930 (�0.008)
and 0.949 (�0.007). The observed increase in these metrics,

Table 5 Results of sequentially choosing the best possible features starting from the single best feature (forward selection) and results of sequen-
tially removing the worst possible feature starting from all features (backward selection).

Step Features(s) chosen

% Accuracy

Min Mean (�Std:Dev:) Max

Forward
selection

1 Spiculation 72.82 77.12 (�1.36) 81.57

2 Spiculation and calcification 74.54 78.76 (�1.31) 82.87

3 Spiculation, calcification, and subtlety 78.02 82.48 (�1.23) 86.02

4 Spiculation, calcification, subtlety, and lobulation 80.20 84.77 (�1.15) 88.69

5 Spiculation, calcification, subtlety, lobulation, and texture 81.08 85.24 (�1.13) 88.86

6 Spiculation, calcification, subtlety, lobulation, texture, and sphericity 81.21 85.69 (�1.12) 89.08

7 Spiculation, calcification, subtlety, lobulation, texture, sphericity, and margin 81.37 85.72 (�1.12) 89.19

8 Spiculation, calcification, subtlety, lobulation, texture, sphericity, margin, and
internal structure

81.37 85.71 (�1.13) 88.81

Backward
selection

1 Subtlety, calcification, lobulation, spiculation, texture, sphericity, margin, and
internal structure

81.37 85.71 (�1.13) 88.81

2 Subtlety, calcification, lobulation, spiculation, texture, sphericity, and margin 81.37 85.72 (�1.12) 89.19

3 Subtlety, calcification, lobulation, spiculation, texture, and sphericity 81.21 85.69 (�1.12) 89.08

4 Subtlety, calcification, lobulation, spiculation, and texture 81.08 85.24 (�1.13) 88.86

5 Subtlety, calcification, lobulation, and spiculation 80.20 84.77 (�1.15) 88.69

6 Subtlety, calcification, and lobulation 79.18 83.75 (�1.17) 87.54

7 Subtlety and calcification 77.14 81.07 (�1.23) 84.69

8 Subtlety 62.43 67.30 (�1.58) 72.81

Table 6 Rankings (see Sec. 3 for details) of the diagnostic features used.

Single-feature accuracy Percent feature significance Geometric mean RF feature-importance

Best (77.12%) Spiculation (100.00%) Subtlety (87.12%) Spiculation (0.2173) Subtlety

(75.56%) Lobulation (99.21%) Calcification (86.24%) Lobulation (0.2147) Spiculation

(70.90%) Margin (98.43%) Spiculation (82.04%) Subtlety (0.1818) Lobulation

(67.30%) Subtlety (98.43%) Lobulation (75.72%) Calcification (0.1737) Calcification

(63.01%) Texture (83.46%) Texture (75.46%) Margin (0.1116) Margin

(61.27%) Sphericity (80.31%) Margin (72.52%) Texture (0.0529) Sphericity

(59.26%) Internal structure (71.65%) Sphericity (66.26%) Sphericity (0.0437) Texture

Worst (57.79%) Calcification (62.20%) Internal structure (60.71%) Internal structure (0.0044) Internal structure
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when diameter and volume are included, demonstrates the rel-
evance and importance of these features for classifying nodule
malignancy more accurately.

As shown in the white violin plot in Fig. 6, when the diameter
and volume features are excluded, the classification accuracy
achieved with the nonlinear classifier varies from a minimum
of 2.43% below the theoretical maximum attainable accuracy
to a maximum of 6.60% below it. On average, the achieved
accuracy is 4.43 ð�0.68Þ% below the theoretical maximum.
We also observe that

EQ-TARGET;temp:intralink-;sec5;63;6421 −Maximum Attainable Accuracy

¼ ð1 − Achieved AccuracyÞ × pd;

where pd is the percentage of the error due to degenerate groups
for each of the trials. We find empirically that pd ¼ 68.90%, on
average. In other words, approximately 69% of the errors made
are due to degenerate examples in the LIDC dataset, leaving the
remaining 31% of the errors to other sources, e.g., to mislabels,
insufficiency of the data, or insufficiency of the classifier. The
existence of a significant classification accuracy shortfall of
4.43% (on average) raises the question of its potential causes
and remedies. It is expected that in other similar and analogous
datasets a gap of this type (i.e., a shortfall in classification accu-
racy from that which is attainable by an ideal classifier on the
dataset) would also exist.

This accuracy gap between the theoretical upper-bound for
the classification accuracy and the actual classification accuracy
achieved is due to overlap in the class-conditional probability
distributions, i.e., in the distributions, PðXjYÞ. Clearly, one
source of overlap in the class-conditional distributions is the
degenerate groups described in Sec. 3.2.3, i.e., groups of iden-
tical input feature vectors with conflicting malignancy-category
output labels. A related overlap can occur when there are data
samples that are close in feature space (under some distance
metric), without input features being necessarily identical, but
whose malignancy categories conflict, i.e., when there are
“near-degenerate” groups of input features with differing and
conflicting malignancy-category output labels. Thus, we define
near-degenerate, or ε-degenerate, groups as follows: degenerate
groups consist of examples where dðXi; XjÞ ¼ 0 and Yi ≠ Yj,
where i ≠ j; dð·; ·Þ is some distance metric and Xi is the
input vector of example i with corresponding label Yi. An
ϵ-degenerate group, on the other hand, has members, Xi, that
are close but not necessarily identical, i.e., dðXi; X̄iÞ ≤ ϵ,
where X̄j is some exemplar for the j’th ϵ-degenerate group
and ϵ ≥ 0 is some chosen nonnegative distance threshold.
Such groups could be obtained, e.g., by a clustering algorithm
(where X̄j would correspond to the centroid of the j’th cluster in
a centroid-based method). The overlap caused by either type of
these data degeneracies reduces the theoretical, maximum-
attainable classification accuracy which, in turn, reduces and
limits the accuracy achievable with a real classifier.

A data degeneracy analysis (i.e., examining the degree of
class-conditional overlap) is useful for determining the theoreti-
cal maximum-attainable accuracy; however, this type of analysis
is unconcerned with the possible origins of the overlap itself.
Thus, to further our understanding of data degeneracy, we iden-
tify three potential causes of class-conditional distribution
overlap:

1. inherent variability in quantification of diagnostic
features,

2. lack of additional informative features, and

3. inadequate sample size and diversity, leading to non-
optimal statistical estimates.

The first potential cause may be difficult to assess and quan-
tify. However, in a study of the related task of lung nodule detec-
tion, Armato et al.43 found substantial variability across
radiologists in the LIDC dataset. Currently, the feature values
are assigned by radiologists, but if the features were quantified
algorithmically, then the variability (a potential source of clas-
sification error) would decrease. The second potential cause is
supported by the demonstrated increase in classification accu-
racy due to the addition of diameter and volume feature esti-
mates, which clearly helps to discriminate better between
malignant and benign lung nodules and thus reduces the
class-conditional overlap. Other used image-derived local and
global features (that are not among the features in the LIDC
dataset) may have a similar effect. For example, a radiologist
could potentially take into account the relative location of the
lung nodule when assigning a malignancy class to the nodule.
In the LIDC dataset, neither a nodule’s relative location within
the lung nor its proximity to anatomical structures were anno-
tated by the radiologists viewing and analyzing the CT images,
although such information could have an effect on assigning a
nodule’s malignancy category since certain locations are more
probable for lung cancer.44 We note that estimates of upper
bounds for classification accuracy or estimates of class-condi-
tional distribution overlap must be rederived for different sets
of input features used for classification and that this may be
more difficult to do when real-valued input features, such as
diameter and volume, are employed.

As a test of the third potential cause, we run experiments with
the nonlinear classifier. For generating training data, we take
random samples of the dataset of increasing sizes from 10%
to 90% (of the total dataset of 2817 samples) in increments
of 10%, setting the remaining data aside. For each randomly
chosen training dataset, we randomly choose 10% of the remain-
ing data as testing data. We repeat this 1000 times for all the
training set sizes. We observe in Fig. 8 that the mean classifi-
cation accuracy shows an overall increase of approximately
2.23%, with only a minor increase of about 0.16% after training
set subsample sizes greater than 60% of the total dataset are
used. This suggests that the maximum amount of information
that the classifier can extract from the data for making classifi-
cations is already present in samples of sizes of at least 60% of
the total dataset size. Hence, the third potential cause of class-
conditional overlap is not likely playing a substantial role in
our study.

In experiment two (see Fig. 7, and Tables 5 and 6), we
observe that including more of the input features generally
improves classification accuracy and that there can be a signifi-
cant variation in classification accuracy for input feature subsets
of particular, fixed sizes (see Fig. 7). We find that the standard
deviation of the accuracy monotonically decreases with increas-
ing subset size (except in the case subset sizes increasing
seven to eight, where it increases very slightly, by 0.01%).
Furthermore, we can see in Fig. 7 that the distributions of accu-
racies can be non-Gaussian. For example, for feature subsets of
size five, the distribution of classification accuracy is bimodal
and varies from a low of 68.7% to a high of 89.0%. The
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upper mode is near the 84% mark, and the lower mode is near
the 80% mark (which are above and below, respectively, the
mean accuracy of 81.5% achieved with subsets of size five).
In other words, certain combinations of five input-features
lead more frequently to classification accuracies near 84%,
while other combinations of five input-features achieve accuracy
near 80% more often. This indicates that some feature combi-
nations are better than others for classification, which we discuss
in more detail below.

To see which subsets have optimal features with the highest
predictive power, we turn to Table 5, which shows the results
obtained for the two forward- and backward-selection processes
described in Sec. 3.2.2. In the forward-selection process, we find
that spiculation is the single best feature for classification. In
steps two and three of the process, the calcification and subtlety
features are added and, thus, are the two next best features to
use. The maximum accuracy (86.02%) that is achieved with just
these three features is within one standard deviation (1.13%) of
the mean accuracy (85.71%) obtained using all eight features.
We observe that by adding one more feature (i.e., lobulation)
in step four to this feature triplet, the mean accuracy increases
to 84.77% from 82.48%; by adding two additional features (i.e.,
texture and sphericity) in steps five and six, the accuracy
increases to 85.69%, which is 0.02% short of the mean accuracy
when using all eight features. Adding the two remaining features
(i.e., margin and internal structure) in steps seven and eight does
not substantially increase or decrease accuracy. The backward-
selection process produces similar results. Generally, the mean
accuracy is less with fewer features, and the standard deviation
of the accuracy decreases with more features added. We note
that there is a partial reflection-symmetry in Table 5 since
steps one through five of the backward-selection process result
in identical feature subsets as in steps four through eight of the
forward-selection process.

Finally, in Table 6, we observe that, according to the geomet-
ric mean of the single-feature accuracy and percent feature-sig-
nificance, the four most relevant features (in decreasing order)

are spiculation, lobulation, subtlety, and calcification; the four
least relevant features (also, in decreasing order) are margin,
texture, internal structure, and sphericity. Interestingly, some
features, while not performing as well as others when used indi-
vidually, have a tendency to improve accuracy when used in
addition to other features, i.e., they have a positive synergistic
effect. For example, calcification is quite poor as an individual
predictor (and, in fact, is the worst individual malignancy indi-
cator) since it ranks last in single-feature accuracy, but the cal-
cification feature shows a very high tendency to significantly
increase accuracy when used with other features since it is sec-
ond best as measured by the percent feature-significance. When
individually added to a feature subset, subtlety, spiculation, and
lobulation all significantly increase classification accuracy over
98% of the time. Thus, each demonstrates the positive synergis-
tic effect. We also observe in Table 6 that the RF feature-impor-
tance metric generally agrees with the geometric mean of the
former two features (i.e., the single-feature accuracy and the per-
cent feature-significance), indicating the usefulness of the RF
feature-importance metric as a possible surrogate for the com-
bined feature relevance, which requires more work to determine.

6 Conclusion
For the LIDC dataset, we have shown that the malignancy label
of a nodule can be accurately classified (4.14%, on average,
below the theoretical maximum accuracy of an ideal classifier)
when only quantified, diagnostic image features are used as
inputs to standard statistical learning methods. We have also
shown that the accuracy of the linear and nonlinear classifiers
can be improved by 1.41% and 2.34% (from 83.23% to 84.64%
and from 85.74% to 88.08%) by including diameter and volume
estimates, respectively. Using only the radiologist quantifica-
tions of image features, we have also achieved an average
AUC score of 0.932 with a nonlinear classifier, which improves
to an average AUC score of 0.949 when diameter and volume
features are included. Our results are comparable to those
obtained with other approaches currently reported in the litera-
ture. These other approaches, by contrast, often use image-based
features that are extracted algorithmically, which, in some cases,
may not be medically interpretable. Our positive results both
support and motivate the further consideration of the CAD para-
digm that first extracts and approximates a set of radiologist-
interpretable diagnostic image features from a CT scan and
then uses these features as inputs to a statistical learning method
for classifying the corresponding nodule as malignant or benign.
By design, this approach is both modular and transparent in the
following senses:

1. Modularity comes from the independent quantification
of constituent features used for malignancy classifica-
tion and allows a radiologist the choice to only use the
desired parts.

2. Transparency comes from the restriction of input fea-
tures used for malignancy classification to only those
which are medically interpretable, which allows for
the components of the CAD system to be medically
informative and intuitive for radiologists.

This CAD approach could, therefore, be useful as an inform-
ative second-reader. Furthermore, we have ranked the lung nod-
ule features given in the LIDC dataset according to their
predictive power (when used both singly and in combination

Fig. 8 Validation set accuracy as a function of dataset size.
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with other features), showing that the four most relevant features
for classification are (in decreasing order of relevance) spicula-
tion, lobulation, subtlety, and calcification.

Future work for such a CAD approach will focus on the
quantification and accurate approximation of interpretable, diag-
nostic image features extracted from CT scans (such as the most
relevant four mentioned above). We believe the task of algorith-
mically quantifying such features is much more challenging
than the determination of a lung nodule’s malignancy category
from already accurately quantified nodule-features due to the
limited amount of validation data available by which to measure
the error in quantifying these physical features and the current
qualitative and imprecise definitions of these features. The for-
mer requires relatively large datasets of lung nodule images with
diagnostic image features quantified by experts to provide
ground-truth labels, while the latter requires the standardization
of the diagnostic image features to be used, according to some
standard terminology set, e.g., the RadLex ontology.45 Indeed,
mentions of the need for standardization of image features have
been made recently in the literature.3,46

Although challenging to implement, the CAD approach dis-
cussed above has the potential to facilitate the diagnostic work
of a radiologist by automatically quantifying relevant and inter-
pretable features of lung nodules and offering an accurate, med-
ically useful summary of a region of interest within a CT image
for a radiologist’s consideration.

Appendix
In the process of working with the LIDC dataset, we have devel-
oped an object-relational mapping software library for (1) query-
ing scans, annotations, and contours in a simple query language
style, (2) performing common operations on retrieved objects (e.
g., computing diameter or volume), and (3) viewing annotation
data on top of CT scan data. We have made the software freely
available at Ref. 47.
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